

PGI Drilling and Completions Noise Project

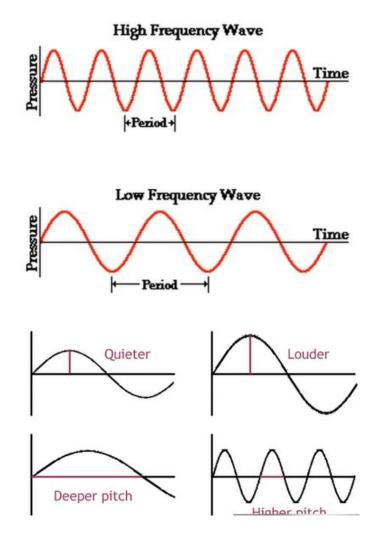
Donna Jamieson Principal Inspector – Rigs RSHQ

PGI Noise Project

a/- PI Well Ops - Donna Jamieson

Resources Safety&Health Queensland

149

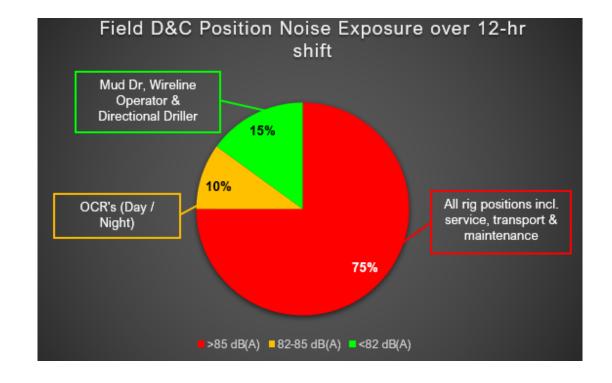


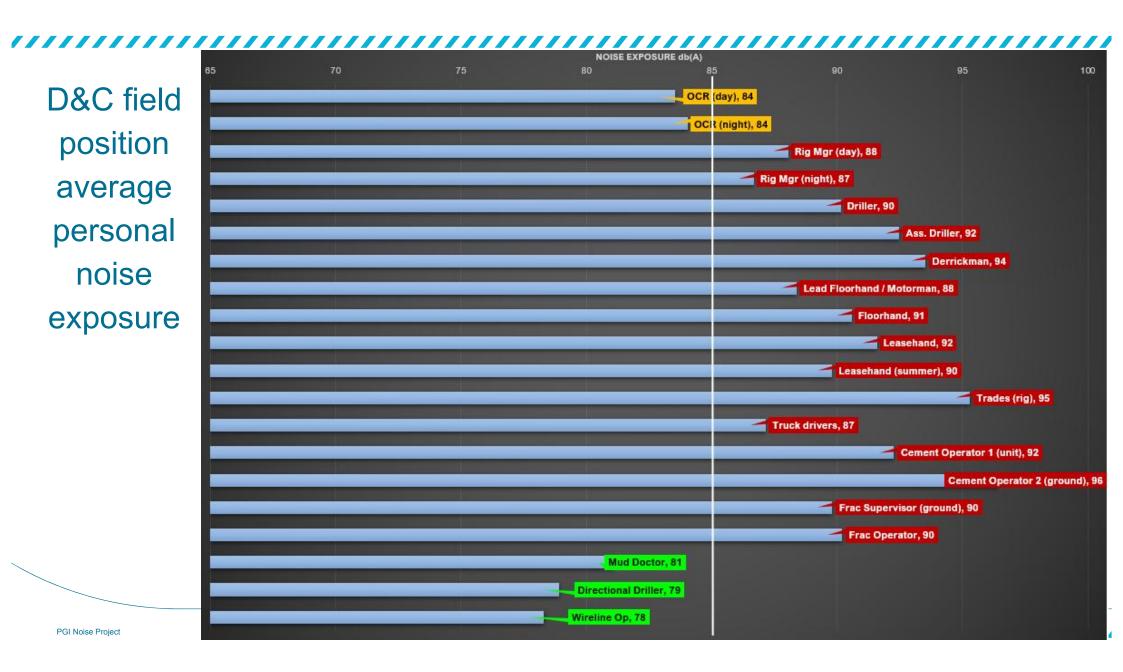
Project scope - 2021

- Understand risk of hazardous noise across D&C operating plant & operations
- · Gather qualitative data:
 - 80 personal noise assessments
 - ~500 area noise measurements
- Understand current risk mitigation strategies & use data to inform potential controls

Noise and how we hear

- Sounds are pressure waves in a medium (solid, liquid or gas i.e. air), radiating from the source
- Analogue signal mechanical vibration electrochemical signal – brain for interpretation
- Loudness of noise is the frequency (Hz) & intensity (size)
- 12-hr shift target noise level:
 - L_{Aeq} 82 dB(A)
 - L_{C,peak} 140 dB(C)
- To quantify risk of decibels equal energy rule
 - Double the energy = double the risk
 - 20dB increase = 100-fold energy increase


Personal noise exposures


22 field positions sampled

- 3 below 82 dB(A)
- 2 in action zone 82-85 dB(A)
- 15 above 85 dB(A)

• HPD (PPE) worn

- ✓ 69%
- × 22%
- **?** 9%

Noise adverse health effects

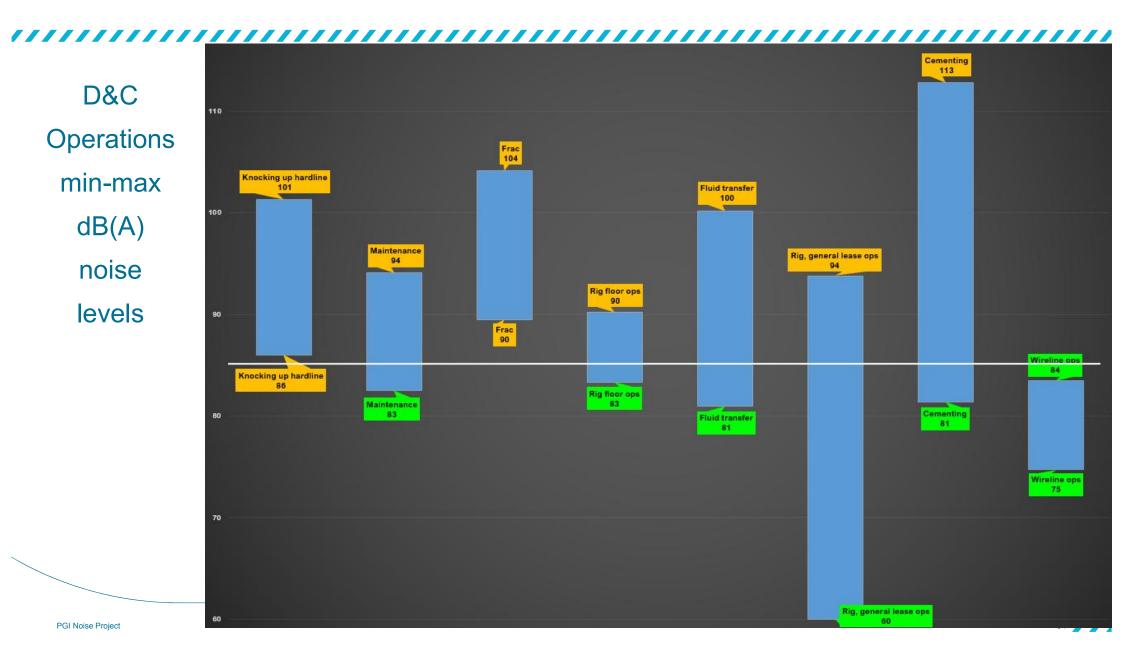
- Noise Induced Hearing Loss (NIHL), 4,000Hz
- Acoustic trauma
- Temporary / Permanent Threshold Shift
- Tinnitus
- Fatigue & cardiovascular disorders incl. high blood pressure & heart disease
- Ototoxins

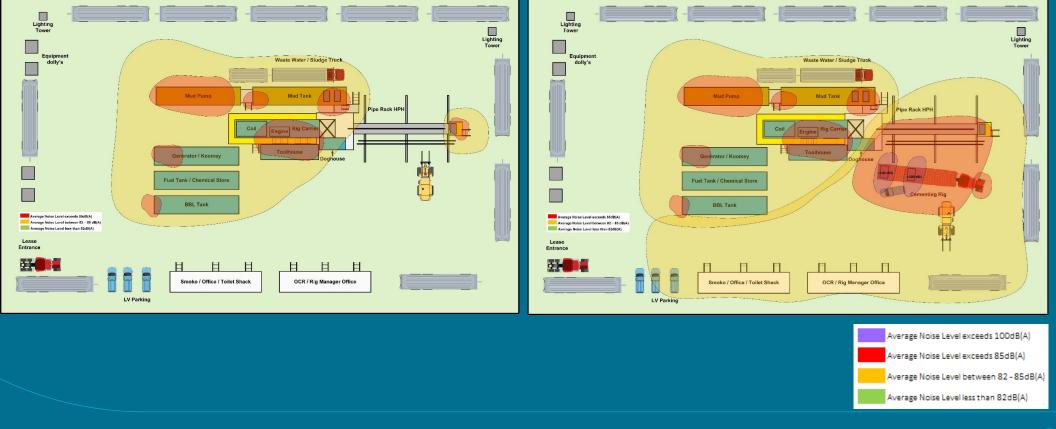
Area Noise Measurements


D&C operating plant & activities

- Drilling & Well Servicing Rigs incl. trades
- Ancillary equipment incl.
 - Cement units
 - Wireline
 - Frac
 - Fluid management
 - Flowback

45% above, 55% below 85dB(A)


- Equipment & operational noise mostly above except flowback,
- Lease below 82 dB(A) with exceptions.



PGI Noise Project

63

D&C operations impact on area noise levels

108.2	118.6	50.7	67.1								
90.9	112.2	39.4	50.5	71.8	70.0						
98.5	113.5	53.4	58.0	64.3	75.1	85.2					
107.6	118.6	50.3	61.2	86.9	92.9	94.4	100.1	01			
91.7	113.4	44.8	54.7	72.1	79.2	81.1	81.1	80.2	75.9		
108.5	118.6	48.2	65.0	79.1	90.6	96.0	99.7	98.0	92.0	84.2	
85.4	105.5	41.3	53.7	60.8	70.3	74.3	76.0	74.2	67.0	58.1	
78.6	102.2	40.3	49.9	58.5	64.8	65.4	68.7	65.7	58.9	50.9	33.7
92.2	111.8	45.6	49.0	70.2	76.9	81.2	82.3	79.8	73.8	66.7	52.0
91.6	113.6	44.3	51.0	73.3	78.7	80.0	80.1	78.7	73.1	66.3	51.4
97.5	114	46.8	53.6	68.9	85.5	91.6	83.8	83.2	75.0	67.1	51.5
85.6	103.9	44.6	60.2	65.8	73.5	71.6	76.5	74.6	68.5	58.3	41.0
102.7	118.6	40.2	54.3	75.5	94.3	89.5	93.1	91.9	84.7	75.5	60.1
108.8	118.6	54.5	62.3	85.5	100.5	96.2	98.7	98.2	92.3	84.0	70
109.9	118.6	54.7	64.9	86.3	91.8	96.1	101.1	101.3	94.2	85.6	7
108.2	118.6	50.6	62.3	93.8	90.0	95.6	97.9	98.2	92.0	81.9	
111.0	118.6	58.5	65.0	90.4	92.4	96.5	102.2	103.1	95.7	86.5	
93.6	109.5	37.0	53.6	69.7	73.7	82.1	84.6	83.1	75.8	64.9	
96.9	112.2	39.2	58.5	69.0	85.5	85.4	87.5	85.6	79.4	70	
104.4	118.6	40.1	62.8	70.1	87.6	92.9	95.1	95.0	90.1	8	
86.3	104	36.2	58.4	57.2	73.0	73.9	75.7	77.0	70.8		
82.0	93.4	35.3	49.1	57.6	57.1	60.0	60.5	56.9	54.3		
81.8	104.6	38.1	66.8	66.2	77.6	76.5	72.4	70.9	68.2		
84.2 PG	Noise Project	42.2	56.7	60.1	65.8	65.4	70.0	67.2	64.7		
84.5	104.2	57.4	61.1	73.0	77 1	78.6	78.5	76.1	72.6		

Using Octave Band Analysis

- Octave Band Analysis (OBA) ranges from 31.5 -16,000 hertz
- Understanding the OBA assists in controlling the noise
 - Noise 'profile'
 - Select the 'right' HPD (in-ear dB(A) level)
- Higher pitched frequencies easier to control than lower

Analysing the noise profile

Generators / HPU

- 250 4000 Hz ranges
 - Av. 91 dB(A)
 - Fans ~3 dB noisier than engine

Personal noise

- 90 92.4 dB(A) Rig crew
- 93.3 dB(A) Trades
 - 93 dB(A) for 70 min w/- no HPD exceeds Daily Dose Limit (DDL)
- Work task & work environment

Laeq (dBA)	LCPeak (dBA)	31.5	63	125	250	500	1000	2000	4000	8000	16000
66.9	97.7	44.8	41.4	48.8	53.3	53.5	56.3	57.2	52.6	43.8	39.0
96.5	115.7	39.3	59.6	76.9	77.4	82.6	86.9	86.8	79.7	68.8	55.1
84.1	108	44.0	58.5	70.1	68.5	70.1	72.8	72.6	63.7	57.8	43.1
83.8	104.3	33.3	52.4	70.9	70.9	70.4	75.1	76.2	61.8	47.8	34.3
81.5	104.1	39.0	52.8	65.1	65.2	70.2	73.9	69.9	60.6	49.0	36.3
84.6	104.1	32.3	49.4	58.7	70.7	76.2	75.3	71.3	69.6	61.0	48.2
102.3	118.5	35.4	59.1	72.5	87.7	90.3	92.9	92.3	84.3	73.6	60.2
108.2	118.6	50.7	67.1	74.9	96.4	93.3	99.4	99.3	91.3	79.1	67.8
90.9	112.2	39.4	50.5	71.8	76.5	79.5	82.4	79.8	73.6	65.8	50.6
98.5	113.5	53.4	58.0	64.3	75.1	85.2	94.1	87.8	82.7	70.5	53.1
107.6	118.6	50.3	61.2	86.9	92.9	94.4	100.1	97.6	90.6	82.9	66.4
91.7	113.4	44.8	54.7	72.1	79.2	81.1	81.1	80.2	75.9	69.2	55.5
108.5	118.6	48.2	65.0	79.1	90.6	96.0	99.7	98.0	92.0	84.2	69.6
85.4	105.5	41.3	53.7	60.8	70.3	74.3	76.0	74.2	67.0	58.1	42.9
78.6	102.2	40.3	49.9	58.5	64.8	65.4	68.7	65.7	58.9	50.9	33.7
92.2	111.8	45.6	49.0	70.2	76.9	81.2	82.3	79.8	73.8	66.7	52.0
91.6	113.6	44.3	51.0	73.3	78.7	80.0	80.1	78.7	73.1	66.3	51.4
97.5	114	46.8	53.6	68.9	85.5	91.6	83.8	83.2	75.0	67.1	51.5
85.6	103.9	44.6	60.2	65.8	73.5	71.6	76.5	74.6	68.5	58.3	41.0
102.7	118.6	40.2	54.3	75.5	94.3	89.5	93.1	91.9	84.7	75.5	60.1
108.8	118.6	54.5	62.3	85.5	100.5	96.2	98.7	98.2	92.3	84.0	70.4
109.9	118.6	54.7	64.9	86.3	91.8	96.1	101.1	101.3	94.2	85.6	73.0
108.2	118.6	50.6	62.3	93.8	90.0	95.6	97.9	98.2	92.0	81.9	66.8
111.0	118.6	58.5	65.0	90.4	92.4	96.5	102.2	103.1	95.7	86.5	73.9
93.6	109.5	37.0	53.6	69.7	73.7	82.1	84.6	83.1	75.8	64.9	44.6
96.9	112.2	39.2	58.5	69.0	85.5	85.4	87.5	85.6	79.4	70.1	56.5
104.4	118.6	40.1	62.8	70.1	87.6	92.9	95.1	95.0	90.1	81.4	67.1
											67

Analysing the noise profile

Cement Units

- 250 4000 Hz ranges
 - Av. 98 dB(A)
 - Fans ~3 dB noisier than engine

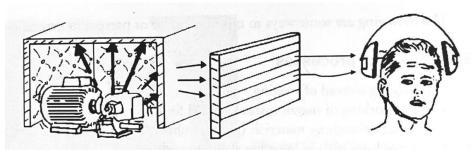
Personal noise

- 92.10 dB(A) Cement Supervisor
- 96.20 dB(A) Cement Operator
 - 96 dB(A) for 35 min w/- no HPD exceeds Daily Dose Limit (DDL)
- Work task & work environment

Laeq	LCPeak	31.5	63	125	250	500	1000	2000	4000	8000	16000
(dBA)	(dBA)										
108.6	125.5	42.2	51.0	81.0	87.2	92.0	95.3	95.5	90.6	83.1	70.3
105.5	119.8	40.7	51.2	73.0	78.6	88.2	90.7	91.1	91.0	93.6	93.3
110.3	126.4	40.1	52.0	83.2	87.3	94.6	94.3	97.4	94.5	95.3	96.6
87.5	111.2	38.1	50.3	66.7	67.2	73.4	78.5	78.4	72.7	64.2	52.1
98.6	116.1	42.9	51.4	65.2	79.2	82.1	88.7	84.9	80.4	73.0	61.7
102.3	118.4	39.3	52.1	75.3	83.6	86.2	90.9	89.7	85.3	79.2	72.1
95.9	114.7	40.5	51.5	72.2	81.5	81.3	85.4	84.0	79.7	74.5	63.0
89.8	108.8	38.8	52.2	61.2	80.7	77.6	80.1	78.7	72.8	64.0	47.9
102.7	120.5	41.2	50.5	64.7	97.7	89.5	91.1	89.4	82.9	72.8	57.1
103.2	123.9	44.5	52.5	69.2	94.4	87.0	89.4	87.4	81.0	71.4	61.2
87.5	111.5	47.6	49.3	60.0	80.2	74.6	77.3	75.2	68.2	56.6	42.7
84.9	102.7	50.0	55.7	54.7	64.0	70.8	78.5	73.8	70.6	57.2	46.7
90.3	105.8	50.5	57.1	55.0	62.4	75.5	82.0	83.0	75.2	64.4	53.3
92	110.6	40.9	60.5	63.9	66.8	78.9	82.8	83.9	78.5	66.7	56.0
83.6	102.9	37.5	53.6	60.1	60.8	69.8	72.7	75.5	73.0	61.1	47.6
112.8	130.2	40.0	58.1	74.6	95.7	95.3	99.4	97.3	92.3	85.9	77.9
109.8	128.1	44.1	59.3	78.8	107.3	93.0	97.1	95.6	85.6	74.2	60.4
95.8	113.8	35.5	50.9	65.7	91.4	80.4	84.5	82.7	76.4	70.5	60.1
110.5	129	44.8	60.6	77.7	107.7	93.3	97.8	96.5	89.2	76.9	59.6
99.8	119.5	36.7	61.0	69.5	91.0	86.0	88.8	88.8	82.8	72.5	61.3
104	121.6	36.8	53.4	70.4	98.8	89.5	91.9	92.2	83.9	75.5	60.1
88.3	106.6	52.8	57.1	57.0	61.5	73.1	82.1	75.7	72.7	58.3	47.6

Noise controls

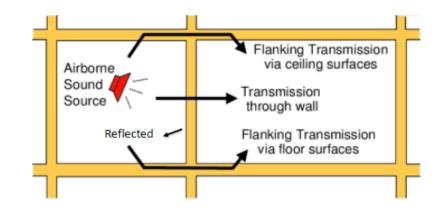
Control at source


- Elimination or modification of noise source or process
- Buy quiet prioritise in design stage

Control between source & receiver

- Most effective
- Enclosures, barriers, sound-proofed rooms, damping hard surfaces

Control noise at receiver


- Enclosures, barriers, sound-proofing, training, HPD
- HPD = interim measure or no feasible engineering noise controls

Engineer-out at the source

Attenuate transmission

Protect receiver

Noise types & solutions

Machinery Noise:

- Mechanical impacts
- High-velocity air or fluid flow
- Vibrating surface areas
- Vibrations of product being processed

Source Noise Reduction example:

- Diesel compressor
- Silencer & enclosure
- = 20 dB(A) noise reduction
 - 100-fold energy decrease!!!

Radiated Noise

• Add stiffeners to large unsupported metal panels

Maintenance!

- Add small openings/perforations in large solid surfaces
- Use gridded metal
- Add vibration damping material

Silencers:

- High-pressure pressure regulators, air vents & blow downs
- Internal combustion engines
- Compressors (Reciprocating, Centrifugal

Noise types & solutions

Vibration Damping

- Effective for:
 - Metal enclosure walls
 - Fan housings
 - Gearbox casings
 - Thin metal machine casings/panels
 - Hopper bins & product chutes

Rubber grommets

Machine dampening 'padding'

Vibration Isolation

- Enclosure isolation
- Rotating machinery mounts & bases
- Flex connectors for piping systems
- Pipe hangers

Lagging

- Resilient absorptive material
- Control for radiant heat emitted
- Thick layer/s for low frequency absorption

Attenuate transmission control example

Enclosure of noisy equipment using dampening material/s

ENS R965

Source control example

Engineer at source using enclosure

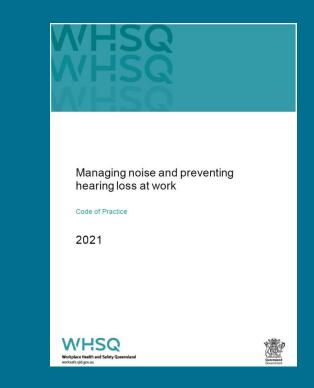
HALLI CU

Learnings

- Inadequate assessment of personal noise exposure levels
- Controls based on environmental noise maps (apples vs potatoes)
- Competent person reqd.
- Worker awareness OFI
- Risk management OFI incl.
 inadequate controls
- Other hazards not considered

Effective risk management of noise

Formal Safety Assessment, s675(1)(e) PG Act


- Benchmark against OEL
- Over attenuation vs under attenuation both risky!

Review existing controls

- HPD "one-size-fits-all" ineffective (Shrek ears)
- Compromised engineering controls (doors left open on enclosures)

Review effectiveness of controls, s700-701 PG Act

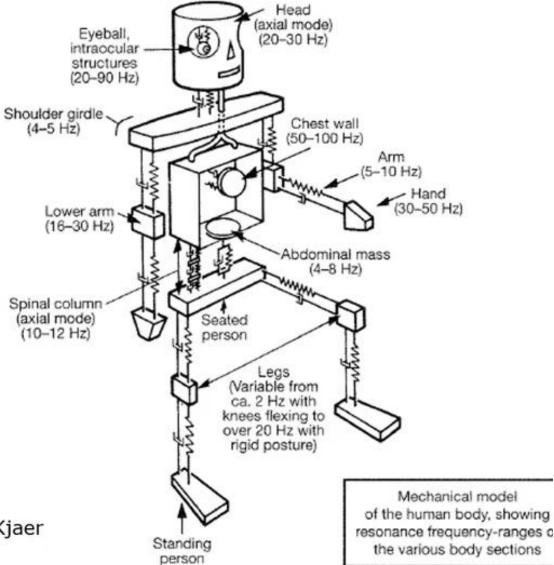
- Audiometric testing recommended <u>1-vr</u> based on project findings
 - ≥ 100 dB(A) L_{Aeq,8h}
 - Ototoxic airborne exposure > 50% WES (regardless of noise level)
 - Ototoxins @ any level + > 80 dB(A) L_{Aed.8h} or 135 dB(C) L_{C.peak}
 - All positions except Wireline, Directional Driller & Mud Dr.

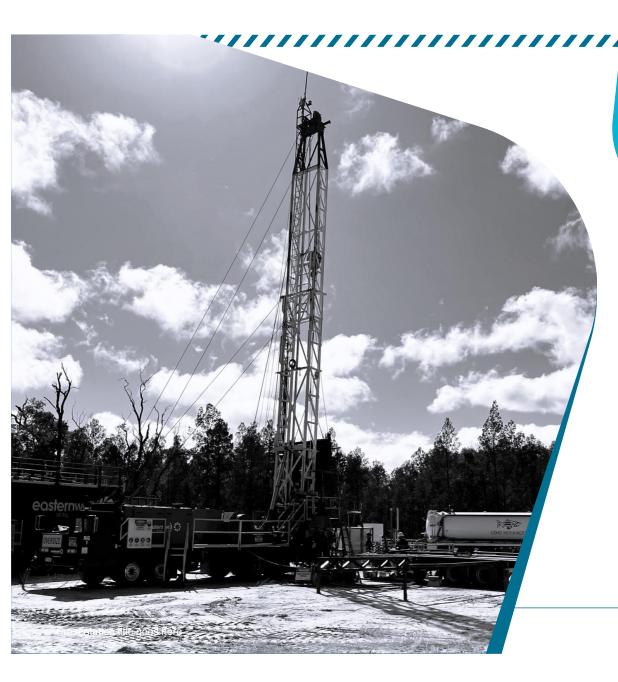
_ _ _ _ _ _ _ _ _ _

Ototoxins

Solvents

- Hand cleaners / cleaning products
 - Skin absorption solvent mixtures & fuels, white spirits


Asphyxiants


- Carbon Monoxide (CO) & Diesel Particulate Matter (DPM)
 - Diesel combustion engines, control wind direction

Physical (Vibration)

- WBV + HAV
 - Standing on vibrating equipment for shift, driving

Source: Bruel & Kjaer

Thank-you!

- ✓ COHO Resources
- ✓ Ensign Australia
- ✓ Halliburton Australia
- ✓ Origin Energy
- ✓ Roma Transport Services
- ✓ Santos Ltd
- ✓ Savanna Energy Services
- ✓ Senex Energy Ltd
- ✓ Silver City Drilling
- ✓ Ventia
- ✓ Westside Corporation

Further info – donna.jamieson@rshq.qld.gov.au 0467 789 613 www.rshq.qld.gov.au

-NSIEN

TRA